Type：EDI－EA1143

1．Applications：

－Street lamps
－Functional lighting－MR16，AR111，PAR and light bulb replacements

2．Features：

（1）High luminous intensity
（2）Long operation life
（3） 100% probing test
（4）Passivation layer on top
（5）Backside mirror layer
Unit：mil
3．Characteristics：
（1）Size
Chip size： 45 mil $\times 45$ mil $(1143 \pm 25 \mu \mathrm{~m} \times 1143 \pm 25 \mu \mathrm{~m})$
Chip thickness： 5.9 mil $(150 \pm 10 \mu \mathrm{~m})$
P bonding pad $\times 2$ ： 3.9 mil $(100 \pm 10 \mu \mathrm{~m})$
N bonding pad $\times 2: 3.9 \mathrm{mil}(100 \pm 10 \mu \mathrm{~m})$
（2）Metallization
P electrode：Au alloy
N electrode：Au alloy
Backside metal：Au alloy
（3）Structure
Refer to drawing
Electro－optical characteristics：${ }^{(1)}$

Parameter	Symbol	Condition	Min．	Typ．	Max．	Unit
Forward voltage	$\mathrm{V}_{\text {t1 }}$	$\mathrm{I}_{\mathrm{t}}=10 \mathrm{uA}$	1.6	－－－	－．．	V
	$\mathrm{V}_{\text {t2 }}$	$\mathrm{I}_{\mathrm{t}}=350 \mathrm{~mA}$	－－－	3.15	3.6	V
Reverse current	$\mathrm{I}_{\text {r }}$	$\mathrm{V}_{\mathrm{r}}=5 \mathrm{~V}$	－－－	－－－	2	$\mu \mathrm{A}$
Dominant wavelength ${ }^{(2)}$	λ_{d}	$\mathrm{I}_{\mathrm{t}}=350 \mathrm{~mA}$	445	－－－	465	nm
Spectra half－width	$\Delta \lambda$	$\mathrm{I}_{\mathrm{f}}=350 \mathrm{~mA}$	－－－	25	－．．	nm
Radiant power ${ }^{(3)(4)}$	Po	$\mathrm{I}_{\mathrm{t}}=350 \mathrm{~mA}$	255	－－－	275	mW
			275		295	
			295	－－	320	
			320		340	

（1）ESD protection during chip handling is recommended．
（2）Basically，wavelength uniformity is $\lambda_{\mathrm{d}} \pm 5 \mathrm{~nm}$ ；however，customer＇s special requirements are also welcome，
（3）Customer＇s special requirements are also welcome．
（4）Radiant power is determined by a correlation with luminous intensity using a Au－plated TO－39 header without an encapsulant．
（5）The tolerance is $\pm 15 \%$ on the above radiant flux specifications．

Fig- 2 Forward Current vs. Forward Voltage

Absolute maximum ratings:

Parameter	Symbol	Condition	Rating	Unit
Forward DC current	I_{f}	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	≤ 700	mA
Reverse voltage	V_{f}	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	≤ 5	V
Junction temperature	T_{f}	$\cdots--$	≤ 115	${ }^{\circ} \mathrm{C}$
Storage temperature		chip	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
		chip-on-tape/storage	$0 \sim 40$	${ }^{\circ} \mathrm{C}$
		chip-on-tape/transportation	$-20 \sim+65$	${ }^{\circ} \mathrm{C}$
Temperature during ackaging		\ldots	$280(<10 \mathrm{sec})$	${ }^{\circ} \mathrm{C}$

Fig-3 Maximum Driving Forward DC Current vs. Ambient Temperature (Derating based on Tj max. $=115^{\circ} \mathrm{C}$)
Maximum rating is package dependent. The above maximum rating was determined using a Metal Core Printed Circuit Board (MCPCB) without an encapsulant. Stresses in excess of the absolute maximum ratings such as forward current and junction temperature may cause damage to the LED.

